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Figure 1. Spurfies leverages synthetic data to learn local surface priors for surface reconstruction from few images. Our model significantly
outperforms previous methods and can be applied to both bounded (DTU dataset, left) and unbounded scenes (Mip-NeRF360, right).

Abstract

We introduce Spurfies1, a novel method for sparse-
view surface reconstruction that disentangles appearance
and geometry information to utilize local geometry priors
trained on synthetic data. Recent research heavily focuses
on 3D reconstruction using dense multi-view setups, typi-
cally requiring hundreds of images. However, these meth-
ods often struggle with few-view scenarios. Existing sparse-
view reconstruction techniques often rely on multi-view
stereo networks that need to learn joint priors for geome-
try and appearance from a large amount of data. In con-
trast, we introduce a neural point representation that disen-
tangles geometry and appearance to train a local geometry
prior using a subset of the synthetic ShapeNet dataset only.
During inference, we utilize this surface prior as additional
constraint for surface and appearance reconstruction from
sparse input views via differentiable volume rendering, re-
stricting the space of possible solutions. We validate the
effectiveness of our method on the DTU dataset and demon-
strate that it outperforms previous state of the art by 35% in
surface quality while achieving competitive novel view syn-
thesis quality. Moreover, in contrast to previous works, our

1geometric-rl.mpi-inf.mpg.de/spurfies/

method can be applied to larger, unbounded scenes, such as
Mip-NeRF360.

1. Introduction

3D surface reconstruction just from a small number of 2D
input images has been an important goal in computer vi-
sion in the recent years. While we entered an era in which
we can get high-quality reconstructions from a large num-
ber of carefully captured images through recent advances in
SDF-based neural fields [35, 38] or surfels in the form of
2D Gaussians [15], we still lack the capabilities to perform
this task from a sparse set of views. The key challenge in
this setup is the under-constrained nature of the optimiza-
tion problem at hand: there are simply too many potential
combinations of geometry and appearance that would sat-
isfy the sparse set of given image observations.

The usual way to solve such under-constrained tasks is to
introduce regularization or priors into the formulation. Typ-
ical approaches include feature consistency [16] and cues
from monocular depth [50], multi-view stereo [34, 42], or
structure from motion [11]. More recently, learned priors
have been introduced, e.g. from pre-trained 2D diffusion
models [43]. They have been shown to clearly improve re-
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construction quality from a few observations, being able to
hallucinate missing appearance details. However, a clear
limitation of diffusion-based approaches is that they require
large amounts of training data in order to generalize to the
diverse domain of appearances that 3D scenes can have.

In this work, we make the key observation that the space
of local surface geometry is much less diverse than that of
surface appearance and make the following three key as-
sumptions: (1) we argue that much less training data is
needed to learn a useful surface geometry prior than to learn
a prior about appearance, (2) that synthetic data can serve
well as training data for geometry as the domain gap be-
tween real and synthetic data for geometry is smaller, and
(3) that a geometry prior already serves as a useful con-
straint to appearance reconstruction from only a few ob-
servations. To verify, we design an architecture that ex-
plicitly disentangles geometry from appearance modeling,
while still jointly optimizing both during the reconstruction
process. With this architecture, we are able to pre-train the
geometry part of our network on synthetic data and enable
it to learn the space of common surface structures. Dur-
ing test-time optimization, the pre-trained geometry branch
then provides regularization for the joint SDF and appear-
ance reconstruction of the scene.

As neural field representation we opt for a point-based
neural field [46], with points initialized by DUSt3R [37],
which we extend to model signed distance functions (SDFs)
instead of density. On the neural point cloud we store sep-
arate features for SDFs and appearance in local neighbor-
hoods. The representation is rendered via volume render-
ing by aggregating and processing neighboring features for
sample points along the ray. Signed distance and radiance
are predicted by a pre-trained geometry and a per-scene ap-
pearance decoder, respectively. We show that Spurfies
• outperforms previous methods in sparse-view surface re-

construction quality by a large margin,
• reaches state-of-the-art novel view synthesis quality, and
• can be applied to larger, unbounded scenes,
by relying on recent advances in point reconstruction [37]
and a local surface prior trained purely on synthetic data.

2. Related Work

2.1. Surface Reconstruction from Images

Dense Views Since NeRF [26] revolutionized inverse
graphics by parameterizing implicit radiance fields as neu-
ral networks trained via differentiable volume render-
ing, there have been many approaches to directly recon-
struct 3D surfaces in a similar manner. NeuS [35] and
VolSDF [47] reformulate the density of radiance fields
based on a signed distance function to implicitly learn a sur-
face representation via inverse rendering. Follow-up works
like MonoSDF [50], Geo-Neus [11], RegSDF [51], and

NeuRIS [34] leverage depth and normal estimation, sparse
geometry from structure from motion (SfM), and photo-
metric consistency constraints in multi-view stereo for ad-
ditional regularization. Another line of research [21, 38,
44, 48, 54] focuses on accelerating training and rendering
of neural surface representations by incorporating explicit
data structures like multi-resolution hash grids [27]. To
this end, following the breakthrough of fully explicit 3D
Gaussian Splatting [19], SuGaR [14], 2D GS [15], and DN-
Splatter [33] try to tame Gaussians for accurate mesh recon-
struction. While high-fidelity surface reconstruction is now
possible with training in the matter of minutes, all these ap-
proaches assume dense captures of the scene in the form of
a large number of input images.

Sparse Views To reduce the number of input views and
therefore enable applications to more real-world settings,
geometric priors can further constrain the space of possible
reconstructions. Approaches for generalizable surface re-
construction [23, 24, 31, 42, 45] learn such priors on addi-
tional training scenes. Specifically, SparseNeuS [24] fuses
2D features into a cascade of coarse-to-fine voxel grids for
end-to-end SDF prediction from sparse input views. These
predictions can be used as initialization for per-scene fine-
tuning. VolRecon [31] and ReTR [23] leverage transformer
architectures for rendering conditioned on similar fused
voxel features. C2F2NeUS [45] replaces imprecise, regu-
lar voxel grids with view-based cascade cost frustums. S-
VolSDF [42] combines VolSDF [47] with CasMVSNet [13]
by supervising the former with probability volumes from
the latter, which in turn produces depth hypotheses used for
sampling in a finer MVS stage. All of these approaches
train a surface prior on image data, limiting generalization
to scenes close to the training distribution.

NeuSurf [16] proposes a two-stage approach by first
training an unsigned distance field given sparse point clouds
from SfM [55], which is used as a coarse geometric con-
straint for fitting a fine signed distance field in the second
stage. However, it relies on global representations resulting
in limited efficiency, scalability, and level of detail. In con-
trast to that, our method trains a local geometric prior on
general, synthetic, texture-less meshes, requiring little data
for generalization. We achieve this by decomposing our
architecture into geometry and appearance branches build
on a point-based representation. Given the recent break-
through of DUSt3R [37] for stereo 3D point cloud recon-
struction via large-scale (pre-)training of transformer archi-
tectures, point-based representations render an elegant so-
lution to obtain watertight surfaces.

2.2. Point-based 3D Representations

Point-based 3D representations [2, 19, 30, 46] equip point
clouds obtained from RGB-D sensors, MVS, or SfM

2



pipelines with additional learnable parameters. Point-
NeRF [46] decodes these features with small MLPs to rep-
resent a radiance field fitted on dense input views. Sub-
sequent works employ similar representations for relight-
ing and deformation [22], single-view reconstruction [39],
and object generation [32]. 3D GS [19] and follow-ups
for surface [14, 15, 33], generalizable [6, 8, 40], or non-
rigid [9, 25, 41] reconstruction use optimizable Gaussian
parameters and spherical harmonic coefficients for view-
dependent RGB, enabling much faster rasterization-based
rendering without any neural components. However, the
explicit nature is hardly compatible with learning of neu-
ral priors without loosing the efficiency advantages. There-
fore, our architecture is based on neural point clouds with
individual geometry and appearance decoding branches for
data-efficient pre-training of a local surface prior only.

3. Prerequisites
Given a sparse set of N = 3 RGB images I = {Ii | i ∈
1, . . . , N}, known camera poses V = {vi | i ∈ 1, . . . , N}
and a point-cloud P = {pi | i ∈ 1, . . . ,M} that we ob-
tain from DUSt3R [37], we aim to reconstruct a surface S.
In the following, we denote all predictions from our model
with the -̂symbol. We choose a continuous implicit surface
representation using a signed distance field ŝ(x) and use
the approach from VolSDF [47] by attaching a volumetric
radiance field with density σ̂(x) and radiance r̂(x) to lever-
age its graceful optimization properties via backpropagation
and gradient descent. The density is derived from the signed
distance via:

σ̂(x) =


1
2 exp

(
ŝ(x)
β

)
· α if ŝ(x) ≤ 0(

1− 1
2 exp

(
− ŝ(x)

β

))
· α if ŝ(x) > 0 ,

(1)

where α and β are learnable parameters that control the
sharpness of the surface. For a given ray x(t) = o + t · d,
we use importance sampling to sample points with intervals
∆i to obtain density σ̂i and radiance r̂i. We then compute
the final pixel colors Ĉu,v for pixel (u, v) via transmittance
computation and ray accumulation from NeRF [26, 47].

4. Spurfies
As the combination of signed distance fields with volumet-
ric rendering introduced in the last paragraph has shown to
provide high-quality surface reconstructions from many ob-
servations, the question is how to enable sparse-view recon-
struction by representing ŝ(x) and r̂(x) with a data prior
that was obtained from a training dataset. We introduce our
technique that we name Spurfies (Figure 2). It extends vol-
umetric rendering by two key components: (1) A neural
point representation (Section 4.1), where each point pi

is associated with geometry and appearance latent codes

fi = (fgi , f
a
i ) that enable local processing and effective

disentanglement of both modalities. (2) A local geometry
prior (Section 4.2) to mitigate the shape-radiance ambigu-
ity inherent in sparse-view reconstruction [53]. We argue
that there is less variety in geometry than in appearance such
that disentanglement in combination with a strong geometry
prior is key. Unlike previous works that rely on multi-view
stereo data during training, it is sufficient to obtain such a
local prior from a synthetic object dataset (ShapeNet [5]).

4.1. Neural Point Representation

We use a distributed representation that is applicable to
whole scenes by attaching disentangled latent codes fgi , f

a
i

to the points pi to form a neural point cloud. To regress
ŝ(x) and r̂(x) at a query location x, we use K neural points
pk within a local neighborhood of radius R.

Local Processing. We map the point features to the rela-
tive query location:

fgkx = GLP(f
g
k ,x− pk) , (2)

fakx = ALP(f
a
k ,x− pk) , (3)

where GLP and ALP are two small MLPs. The resulting
intermediate latent codes fgkx and fakx encode local geometry
and appearance. The use of relative positions x−pk makes
our architecture local and translation invariant, a property
that allows application on larger scenes [46].

Signed Distance Regression. We then directly map the
geometry features to signed distance values and interpolate
them at the query location via:

ŝ(x) =

∑K
k=1 wk · ŝkx∑K

k=1 wk

, ŝkx = GREG(f
g
kx), (4)

where GREG is another MLP and the weighting function
wk = e−λ∥x−pk∥2

2 is modelled using radial basis functions
(RBFs). We use Gaussians as the distance kernel with vari-
ance λ, which controls the influence of the neighboring neu-
ral points pk. In addition, the RBF weights are bounded be-
tween [0, 1] providing stability during the training process.

Radiance Regression. For radiance prediction, we first
interpolate the local scene appearance encoded by neigh-
boring points and subsequently regress the radiance with a
small MLP AREG:

r̂(x,d) = AREG(f
a
x ,d), fax =

∑K
k=1 wk · fakx∑K

k=1 wk

, (5)

with view direction d, following previous work [46]. The
interpolation weights wk are computed using the same RBF
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Figure 2. Method overview: 1) Preprocess: given a sparse set of input views, we make use of DUSt3R [37] to predict points P .
Representation: The points serve as basis for a neural point representation that stores disentangled features fa, fg for geometry and
appearance on each point. Local Prior (top): We learn a local geometry prior GLP & GREG over a subset of shapes from the synthetic
ShapeNet dataset [5] by optimizing to predict ground truth SDF. 3) Spurfies (bottom): We make use of the prior for surface reconstruction
from sparse images, only optimizing the latent codes fa, fg and the color MLPs ALP & AREG to reconstruct images via volume rendering.

kernel as in the SDF regression, ensuring smooth blending
of local appearance information. Finally, ŝ(x) and r̂(x) are
rendered via volumetric rendering (c.f. Sec. 3).

4.2. Local Priors

To address the shape-radiance ambiguity [53] inherent in
sparse-view settings, we propose a novel approach that
diverges from traditional multi-view stereo (MVS) based
methods. While previous sparse-view reconstruction tech-
niques [24, 31] often rely on MVS networks with cost vol-
umes and use 3D CNNs to regress SDF and color, we lever-
age the disentangled nature of our proposed neural point
representation. Notably, in our approach the geometry and
appearance branches are completely separate. This enables
us to learn generalizable local geometry priors in the net-
works GLP and GREG on a synthetic dataset with available
ground-truth geometry. During inference, we keep the ge-
ometry networks frozen and only optimize the geometry la-
tent codes together with the full appearance branch.

4.2.1 Training

To train the geometry network effectively, we require a set
of query points X = {xi}Si=1 with corresponding ground-
truth signed distances s(xi). For each training mesh, we
also sample a neural point-cloud N = {(pi, f

g
i )}Mi=1. It

consists of global point coordinates and randomly initial-
ized geometry latent codes for each point.

We follow the procedure outlined in [4, 29] to sample the
query points and evaluate the ground-truth SDF. To enhance
the network’s robustness to noise, we add Gaussian noise to
the neural point locations with variance 0.005. Our training
dataset is a small subset of ShapeNet [5], consisting of five

object classes: sofas, chairs, planes, tables, and lamps. The
local prior is trained on a total of 50 objects, with 10 objects
randomly selected from each class.

This training approach ensures that our geometry net-
work learns a robust and generalizable representation of
local shapes using SDF ground truth as opposed to using
incomplete depth maps or unreliable inverse renderings,
which require much more diverse training data and are sig-
nificantly more expensive. A key contribution is to show
that a small and accurate synthetic dataset is sufficient to
learn a prior that generalizes to general, large scale scenes.

4.2.2 Loss Functions

We train the local prior using the following loss functions.

SDF Loss. We take the absolute difference between the
ground-truth s(xi) and the predicted SDF value ŝ(xi) [27].
We further weight the loss closer to the surface by scaling
with the inverse of the ground-truth distance and add a small
number to prevent division by zero:

LSDF =

S∑
i=1

|s(xi)− ŝ(xi)|
|s(xi)|+ ϵ

. (6)

Eikonal Loss. We use the Eikonal loss to regularize the
Signed Distance Function (SDF) [12] and ensure the prop-
erties of a true distance field:

LEik =

S∑
i=1

(∥∇ŝ(xi)∥2 − 1)
2
. (7)
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Scan ID 21 24 34 37 38 40 82 106 110 114 118 Mean CD

Points2Surf [10] 3.73 2.85 2.55 5.13 3.85 2.41 2.30 3.95 3.33 2.37 2.84 3.21
DUSt3R [37] + Poiss. [18] 3.31 2.12 2.00 4.25 3.28 2.59 2.48 4.28 3.85 2.68 3.32 3.11
CAP-UDF [55] 2.72 1.53 1.45 4.05 2.78 1.81 4.22 3.51 3.83 2.24 3.65 2.89

NeuS [35] 4.52 3.33 3.03 4.77 1.87 4.35 1.89 4.18 5.46 1.09 2.40 3.36
VolSDF [47] 4.54 2.61 1.51 4.05 1.27 3.58 3.48 2.62 2.79 0.52 1.10 2.56

SuGar [14] 2.71 2.04 2.14 4.01 2.90 2.45 4.68 3.82 3.28 2.44 2.66 3.01

SparseNeusft [24] 3.73 4.48 3.28 5.21 3.29 4.21 3.30 2.73 3.39 1.40 2.46 3.41
VolRecon [31] 3.05 3.30 2.27 4.36 2.51 3.24 3.30 3.10 3.58 1.86 3.68 3.11
S-VolSDF [42] 3.18 2.95 2.19 3.40 2.30 2.69 2.69 1.60 1.48 1.21 1.16 2.26
NeuSurf [16] 3.22 2.42 1.38 2.61 1.72 3.46 2.68 1.44 2.42 0.61 0.87 2.08

Ours 2.36 1.12 0.83 2.39 1.14 1.55 1.67 1.26 1.14 0.61 0.94 1.36

Table 1. Quantitative mesh reconstruction comparison based on Chamfer Distance (mm) ↓ on the DTU dataset. On average, we improve
on the previous best method by 35% (1.36 vs. 2.08 CD). We also outperform various baselines that work on points only.

Total Variation Loss. We find that regularizing the geom-
etry latent codes, such that nearby neural points are closer in
latent space, is beneficial for surface reconstruction. Thus,
we introduce a total variation loss:

LTV =

M∑
i=1

∑
k∈K(i)

∥fgi − fgk∥1
∥pi − pk∥2

, (8)

where K(i) is the local neighborhood of neural points
around the point with index i. This results in smooth
changes to the regressed local surface (c.f. Sec. 5.2).

Training Objective. In total, we find the optimal param-
eters of GLP, GREG, and fgi by minimizing:

LPrior = LSDF + λTV · LTV + λEik · LEik , (9)

where the factors λ weigh the individual loss terms.

4.3. Sparse-view Reconstruction

We incorporate the knowledge learned from the local prior
to the volume rendering pipeline. We achieve this by keep-
ing the geometry network fixed and only optimizing latent
codes and the appearance network using the following es-
tablished rendering losses for sparse-view reconstruction.
For details about loss functions from previous works and
the individual weights we refer to the appendix.

Rendering Loss. To ensure that our reconstructed model
accurately reproduces the input images, we employ a ren-
dering loss. It is defined as the L1 distance between the
rendered and ground-truth images:

LRen =
∑

i,u,v∈I
∥Ĉi,u,v − Ci,u,v∥1 ,

PSNR ↑ SSIM ↑ LPIPS ↓
IBRNetft [36] 15.71 0.75 0.29
MVSNeRF [7] 18.37 0.81 0.25
VolSDF [47] 14.18 0.62 0.35
S-VolSDF [42] 19.67 0.71 0.30
NeuSurf [16] 18.95 0.76 0.26
SuGaR [14] 21.32 0.83 0.24

Ours 20.78 0.80 0.20

Table 2. Quantitative NVS comparison on DTU. Our method
reaches state-of-the-art novel view synthesis quality by being on
par with SuGaR [14]. Note that SuGaR achieves much lower sur-
face quality (c.f. Tab. 1) and shows artifacts in qualitative results
(c.f. Fig. 4) in the given sparse-view setting.

where Ĉi,u,v is the pixel color of pixel (u, v) of image i,
and Ci,u,v the respective ground truth value.

Feature Consistency Loss. We use a feature consistency
loss LFC from NeuSurf [16]. It minimizes the differences
in VisMVSNet [52] features between the projections of sur-
face points onto different views. This encourages consis-
tency across views and support reconstructing finer surface
details. This loss minimizes the differences in feature space
between the projections of each surface point onto different
views. By doing so, we encourage consistency across views
and support reconstructing finer surface details.

Pseudo SDF Loss. We adapt a pseudo SDF loss LPseu

from previous work [11] for our approach. It is minimized
when the neural points pi lie on the zero level set of the
predicted SDF ŝ, i.e., on the surface.
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Figure 3. Qualitative mesh reconstruction comparison on DTU. Compared to previous state-of-the-art sparse-view methods, our recon-
struction demonstrates superior completeness in regions with less view overlap. Our closest competitor is NeuSurf, which also reconstructs
high quality surfaces on the object-centric DTU scenes. However, it fails to generalize to larger scenes (c.f. Fig. 5).

Optimization Objective. In total, we find the optimal pa-
rameters of ALP, AREG, fgi , and fai by minimizing:

LRec = LRen+λFC·LFC+λPseu·LPseu+λTV·LTV, (10)

obtaining the final scene reconstruction.

5. Experiments
In this section, we compare Spurfies against previous meth-
ods for sparse-view surface reconstruction. We begin by
introducing the used datasets, baselines and metrics, before
presenting reconstruction results in Sec. 5.1 and an ablation
study with additional feature analysis in Sec. 5.2.

Datasets. In our evaluation process, we utilize the DTU
dataset [17], a comprehensive collection of object scans
featuring 49 images per scan, each with a resolution of
576×768. The dataset provides point clouds, camera intrin-
sics, and poses, making it ideal for assessing sparse-view re-
construction methods. We observe that various approaches
in the literature differ in their selection of input views
for evaluation. Adopting the strategy employed by Pixel-
NeRF [49], we take views 22, 25, and 28 from each scan
as input, leaving 25 test views. The setup represents a dis-
persed view distribution with low overlap. For evaluation,

we follow previous work S-VolSDF [42], using the same
set of scans from the DTU dataset for our approach and all
baseline methods. We also evaluate on Mip-NeRF360 [3],
a dataset of larger, unbounded scenes, captured from dense
views. Since none of the previous works evaluates sparse-
view reconstruction on Mip-NeRF360, we randomly choose
a subset of three views to test. Note that none of our test
scenes are in the training data of DUSt3R [37].

Baselines. We compare our work against multiple
state-of-the-art sparse-view reconstruction techniques:
SparseNeuS [24], VolRecon [31], NeuSurf [16] and
S-VolSDF [42]. These methods leverage MVS priors
predominantly trained on multi-view datasets such as
DTU [17], ensuring they operate within a similar data
distribution. Additionally, we compare our approach with
another point-based (dense-view) reconstruction method
SuGaR [14] that employs Gaussians as the underlying 3D
representation. To ensure a fair comparison, we initialize
SuGaR [14] with point clouds obtained using DUSt3R [37],
which improves its results. We also evaluate against surface
reconstruction baselines directly from point clouds such
as Poisson reconstruction [18], Points2Surf [10] and
CAP-UDF [55], directly applied to the DUSt3R [37]
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Figure 4. Qualitative NVS comparison on DTU. Our method demonstrates superior novel view synthesis quality relative to previous
techniques. In comparison to NeuSurf [16] and S-VolSDF [42], our method produces sharper details. The Gaussian reconstruction method
SuGaR [14] and volume rendering approach VolSDF [47] are not designed for sparse-view reconstruction and, therefore, show typical
artifacts.

point clouds. Further, we compare against dense volume
rendering methods such as VolSDF [47] and NeuS [35].

Metrics. We evaluate our technique against the baselines
using both mesh reconstruction and novel view synthesis
(NVS) metrics. For mesh quality assessment, we employ
the Chamfer Distance (CD), which measures the accuracy
of the reconstructed mesh by calculating the average dis-
tance between points sampled from the mesh and the corre-
sponding points in the ground-truth point cloud. For NVS,
we utilize Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS).

Implementation Details. For the neural point representa-
tion, we built upon codebases from previous work [39, 46].
Our training process for the local prior utilizes a batch size
of 5. Each batch instance comprises 40,000 randomly sam-
pled query points, equally distributed w.r.t. positive and
negative signed distances, along with 2,000 neural points.
We train the geometry networks and the latent codes for
5,000 epochs. The total training time for the local prior is
approximately 8 hours, utilizing a single A100 GPU.

For sparse-view reconstruction, we optimize the param-
eters for 100,000 iterations using the Adam optimizer [20]
on a single A100 GPU, which takes 3.5 hrs to converge de-
pending upon the number of neural points. We refer to the
supplementary material for more details.

5.1. Reconstruction Results

Our method demonstrates state-of-the-art quantitative re-
sults (Table 1) in comparison to previous sparse-view and
point-based reconstruction techniques. Qualitative compar-
isons are presented in Figure 3 and the supplement. Our re-
constructions exhibit superior completeness and absence of
floaters, resulting in enhanced reconstruction quality. No-
tably, while previous works utilize DTU for prior training
and inference on the same data distribution, our prior is
trained exclusively on synthetic data (Section 4.2). Lever-
aging our local property, we evaluate our method on un-
bounded scenes from Mip-NeRF360. Figure 5 presents
qualitative mesh comparison results with NeuSurf [16], il-
lustrating that our method achieves significantly more ac-
curate reconstructions. In the absence of ground-truth point
clouds, our evaluation is limited to qualitative comparisons
with more results in the supplementary material.
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Figure 5. Qualitative mesh reconstruction comparison on Mip-
NeRF360 [3]. While NeuSurf [16] also produces good results on
object-centric scenes it fails on larger, unbounded scenes. In con-
trast, our local prior generalizes well to Mip-NeRF360. Please
refer to the appendix for additional results.

Figure 6. Qualitative NVS comparison on Mip-NeRF360 [3].
Our geometry prior acts as effective regularization for appear-
ance resulting in robust fitting of sparse views. Novel views from
NeuSurf [16] quickly deteriorate when moving away from training
views, indicating overfitting.

Figure 7. Qualitative ablation of our local prior (LP) and total
variation LTV regularization of geometry latent codes. It can be
seen that both improve surface quality.

Figure 8. Learned geometry latent codes visualized via PCA. We
observe similar features for points with same surface orientations.

Quantitative and qualitative results for novel view syn-
thesis are presented in Table 2 and Figure 4, respectively.
Our method achieves state-of-the-art NVS results among
volume rendering-based techniques. The results are com-
parable to the Gaussian splatting-based SuGaR [14], despite
SuGaR’s inferior surface reconstruction quality.

Local Prior LTV Mean CD ↓
× × 2.09
× ✓ 1.91
✓ × 1.59
✓ ✓ 1.36

Table 3. Quantitative ablation of the proposed local prior and
total variation regularization of geometry latent codes. Both con-
tribute strongly to the reconstruction quality.

5.2. Ablation Study

We study the effect of our proposed local prior and the total
variation regularization LTV of the geometry latent codes
with quantitative results in Table 3 and qualitative results in
Figure 7. With the proposed point-based representation and
regularizing losses from prior works (cf. Sec. 4.3), Spur-
fies matches the performance of the state-of-the-art base-
line NeuSurf [16]. Leveraging the local prior obtained by
training on synthetic data significantly enhances the level of
detail in reconstructions. The total variation regularization
on top mainly removes noise in under-constrained regions
resulting in clean meshes.

Analysis. In Figure 8, we visualize the learned geometry
latent codes using Principal Component Analysis (PCA). It
reveals a correlation between similar orientations and their
corresponding geometry codes. By clustering the points
based on their learnt latent codes we can also extract parts
that are similarly oriented (c.f. supplementary material).

6. Conclusion

We introduced Spurfies, a novel approach for sparse-view
surface reconstruction that uses a distributed neural repre-
sentation on point clouds and completely disentangles ge-
ometry and appearance. Our work shows that using a small
subset of accurate synthetic ShapeNet data is sufficient to
learn a high-quality local surface prior. We evaluated our
method on the DTU and Mip-NeRF360 datasets, demon-
strating state-of-the-art performance in mesh reconstruction
from sparse views on DTU and that our method does gen-
eralize to large scenes. Our results indicate that Spurfies ef-
fectively mitigates the shape-radiance ambiguity inherent in
sparse-view settings, producing high-quality surface recon-
structions with sparse input views. Our work provides an
important insight for the future direction of the field, which
is that the geometry prior is most important and can effec-
tively be modeled by disentangling it from appearance and
by training it on synthetic data.
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Spurfies: Sparse-view Surface Reconstruction using Local Geometry Priors

Supplementary Material

A. Architectures

Our method employs four Multi-Layer Perceptrons (MLPs)
and two sets of learnable latent codes. The MLPs are: ALP,
GLP, used for local processing, signed distance regressor
GREG, and Radiance regressor AREG. The latent codes are
for color fa and geometry fg . Here are the details of these
components:

Latent codes: The color latent codes fa ∈ R64 and the
geometry latent codes fg ∈ R32 are both initialized from a
normal distribution with variance 1e−4.

Radiance Local Processing ALP: This MLP comprises
four linear layers with intermediate dimensions of 128. It
takes as input the color latent codes fa and the relative dis-
tance of query points to the neural points, with positional
encoding using 6 frequencies.

Raidance Regression AREG: processes the aggregated
color latent codes along with the view direction (without
positional encoding). It consists of three linear layers with
dimensions [259, 128, 3].

Geometry Local Processing GLP: This MLP also has
four linear layers with intermediate dimensions of 128. It
processes the geometry latent codes fg and the relative dis-
tance of query points to the neural points, without any posi-
tional encoding. This MLP is frozen after learning the local
geometry prior and remains unchanged during sparse view
surface reconstruction.

Signed Distance Regression GREG: This consists of a
single frozen linear layer that maps the processed geometry
latent codes to an SDF value.

B. Loss Functions

Feature Consistency Loss LFC [16]: First, we estimate
a set of surface points P̂ = {p|p = xi,u,v(t

∗)} by finding
zero-crossings t∗ along each ray xi,u,v(t) that are computed
using linear interpolation between adjacent samples:

t∗ =
ŝ(x(tj))tj+1 − ŝ(x(tj+1))tj

ŝ(r(tj))− ŝ(x(tj+1))
. (11)

Figure 1. Qualitative comparison of mesh reconstruction with
the point-based mesh reconstruction methods. In contrast to our
approach, point-based mesh reconstruction methods often show
missing areas, even when initialized with DUST3R [37] point
clouds.

Figure 2. Sampled points from the reconstructed mesh on few
scans from DTU dataset.

where tj is estimated using ŝ(x(tj)) · ŝ(x(tj+1)) < 0. We
then define the photo-consistency loss as:

LFC =
1

|P̂||I|

∑
pi∈P̂

∑
πj∈Π

∥fϕ(πj(pi))− fϕ(π0(pi))∥1,

(12)
where Π is the set of the projection matrices for the images
I, with I0 being the reference view, and fϕ computed with
VisMVSNet [52].

Pseudo loss Lpseu : We estimate surface points using ren-
dering weights [11]. This approach ensures that the esti-
mated points have a SDF value close to zero, effectively ly-
ing on the surface. We compute the estimated surface point
location t∗ along a ray x(t) as a weighted average of sample
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positions:

t∗ =
∑
i

wi · ti∑
wi

, (13)

where wi are the rendering weights and ti are the sample
depths along the ray. Using these estimated surface points,
we introduce the pseudo ground-truth loss:

LPseu =
1

N

∑
||ŝ(x(t∗))|| . (14)

C. Implementation Details
Training: For sparse view reconstruction, we optimize a
composite loss function:

Ltotal = Lren+λfc ·Lfc+λpseu ·Lpseu+λTV ·LTV, (15)

where λfc = 0.5, λpseu = 0.5, and λTV = 0.01. We
train the model for 100,000 iterations using the Adam opti-
mizer [20] on a single A100 GPU.

We implemented efficient querying of K neural neigh-
bors implemented using a GPU-accelerated VoxelGrid ap-
proach [39, 46]. The VoxelGrid parameters are configured
as follows:

1 voxel_size = (0.025, 0.025, 0.025)
↪→ % Voxel size for each dimension

2 voxel_scale = (2, 2, 2)
↪→ % Voxel scale for each dimension

3 kernel_size = (3, 3, 3)
↪→ % Range of voxels searched for
↪→ neighbors

4 max_points_per_voxel = 26
↪→ % Maximum number of points stored in
↪→ a voxel

5 max_occ_voxels_per_example = 20000
↪→ % Maximum number of occupied voxels
↪→ per point cloud

6 ranges = (-1.0, -1.0, -1.0, 1.0, 1.0, 1.0)
↪→ % Maximum ranges the VoxelGrid spans

The voxel size is set to match the average distance be-
tween neural points, ensuring an appropriate spatial distri-
bution. Each voxel is limited to containing a maximum of
26 points, balancing between spatial resolution and compu-
tational efficiency.

We set K = 8 for neighbor queries, aiming to have, on av-
erage, 8 queried neural points for every ray-marched query
point. This configuration strikes a balance between captur-
ing sufficient local information and maintaining computa-
tional efficiency.

Datasets: For evaluation on the DTU [17] dataset, we ad-
here to the split established by S-VolSDF [42]. This pro-
tocol excludes scans from the training set of multi-view

stereo methods, utilizing only those in the test/validation
splits. Additionally, we follow the standard protocol em-
ployed by [1, 28, 47] for the quantitative evaluation.

Since, there are no previous sparse view method tested
on Mip-NeRF 360 [3], we randomly select three input views
for all qualitative evaluations. The lack of ground-truth
point clouds precludes Chamfer Distance (CD) evaluation,
limiting our analysis to qualitative results. Our evalua-
tion encompasses four scenes from Mip-NeRF 360, with
corresponding view IDs as follows: Garden: (DSC08116,
DSC08121, DSC08140) Kitchen: (DSCF0683, DSCF0700,
DSCF0716) Treehill: ( DSC9004, DSC9005, DSC9006)
Stump: ( DSC9307, DSC9313, DSC9328).

Results: Our method demonstrates superior performance
in mesh reconstruction compared to point-based tech-
niques such as Points2Surf [10] and CAP-UDF [55]. As
shown in Figure 1, even when using points obtained from
Dust3R [37], these alternative methods often produce re-
constructions with holes and fail to capture fine details. In
contrast, our approach achieves more complete and detailed
reconstructions, highlighting the effectiveness of our neu-
ral point-based representation and learned local geometry
prior.

Additional reconstruction and Novel View Synthesis
(NVS) results on the Mip-NeRF 360 dataset are presented
in Figure 3 in comparison with NeuSurf [16] and S-
VolSDF [42]. We also show points sampled from the re-
constructed mesh Figure 2.

D. Local Prior

Data: To train our local prior, we design a setup that emu-
lates volume rendering conditions. We sample two distinct
sets of points:

1) Query points X = {(xi, ρi)}Ni=1, sampled in close
proximity to the mesh surface. These points are generated
using two different variances (0.05 and 0.001) to simulate
the ray-marching process in volume rendering. On average,
we sample N = 500k query points for every mesh.

2) Neural points N = {(pj , fgj )}Mj=1, which represent
the underlying structure of our reconstruction. To ensure
density-agnostic learning during local prior training, we
employ farthest point sampling on the mesh surface, main-
taining an average inter-point distance of 0.025. The num-
ber of neural points, M, varies based on the mesh size,
which is normalized to fit within a unit cube. During in-
ference for sparse view reconstruction, we subsample the
neural points to match the same density as training.

Our training data is from five classes in the ShapeNet [5]
dataset: sofas, chairs, planes, tables, and lamps. To enhance
robustness against noise, we add Gaussian noise with a vari-
ance of 0.01 to the neural points.
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Figure 3. Qualitative mesh reconstruction on Mip-NeRF 360 [3]. Compared to previous sparse view methods, we can achieve much
better reconstruction on larger, unbounded scenes. S-VolSDF completely failed on the stump scene.

Training: To train the local prior, we employ a combina-
tion of loss functions:

Lprior = LSDF + λTV · LTV + λeik · Leik (16)

where λTV = 1e−2 and λeik = 1e−3.
Our training process utilizes a batch size of 5. Each batch

instance comprises 40,000 randomly sampled query points,
equally distributed between positive and negative SDF sam-
ples, along with 2,000 neural points. These neural points are
padded with points outside the unit cube to ensure consis-
tent batch size.

We train the geometry MLP and the latent codes for
5,000 epochs. For the latent codes, we implement a co-
sine annealing learning rate schedule, starting at 1e−2 and
gradually decreasing to 3e−4. The MLP is trained with a
constant learning rate of 3e−4. We use the Adam [20] op-
timizer throughout the training process. Instead of K = 8
during sparse view reconstruction, we set K = 4 neighbors
during the local prior training.

The total training time for the local prior is approxi-
mately 8 hours, utilizing a single A100 GPU. This compre-
hensive training approach ensures that our local prior effec-

tively captures the geometric properties of diverse shapes,
enabling robust sparse-view reconstruction.

Results: We show some quantitative results in Figure 5
of surface reconstruction on ShapeNet [5] dataset and the
Stanford bunny. These results are shown for unseen objects
after training the prior. The geometry MLP is frozen and
only the geometry latent codes are optimized. We achieve
quality mesh reconstruction with high surface details.

We extend our analysis to demonstrate the potential of
our optimized geometry latent codes for point cloud clus-
tering. Figure 6 illustrates this capability using the Stanford
bunny model, where we present six distinct clusters derived
from these codes.

The clustering results reveal an property of our opti-
mized geometry latent codes. These codes appear to cap-
ture and encode local surface orientations effectively. As
a result, the clustering process groups points with simi-
lar local geometric characteristics together. This suggests
that our method not only reconstructs the surface accurately
but also learns a meaningful representation of local surface
properties. Specifically, we observe that: 1) Points belong-
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Figure 4. Qualitative NVS on Mip-NeRF 360 [3]. Spurfies can synthesize novel views in higher quality than previous sparse-view
methods.

Figure 5. Mesh reconstruction results on a few unseen objects
from ShapeNet [5] and the Stanford bunny.

Figure 6. Clustering of optimized geometry latent codes based on
six orientations. The geometry latent codes add local descriptive
information to point clouds.

ing to the same cluster tend to have similar surface normals
or curvature properties. 2) Transitions between clusters are
generally smooth, indicating a continuous representation of
geometric features which is achieved using LTV.

This clustering capability demonstrates an additional
utility of our approach beyond surface reconstruction. It
suggests potential applications in shape analysis, feature de-
tection, and semantic segmentation of 3D models.
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