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Figure 1. We introduce MEt3R, a metric for multi-view consistency between pairs of generated images, which is independent of image
quality, image content, and does not require camera poses. Left: generated images from different generative models, conditioned on
the first frame, with MEt3R score map indicating levels of inconsistencies between consecutive images i and i + 1. Right: pair-wise
consistency scores, evaluated for consecutive frames in a sliding window, averaged over multiple sequences. The pattern in MV-LDM’s
consistency clearly shows artifacts from using anchor frames that are generated first, highlighting the high signal-to-noise ratio of MEt3R.

Abstract

We introduce MEt3R, a metric for multi-view consistency in
generated images. Large-scale generative models for multi-
view image generation are rapidly advancing the field of
3D inference from sparse observations. However, due to
the nature of generative modeling, traditional reconstruc-
tion metrics are not suitable to measure the quality of gen-
erated outputs and metrics that are independent of the sam-
pling procedure are desperately needed. In this work, we
specifically address the aspect of consistency between gen-
erated multi-view images, which can be evaluated indepen-
dently of the specific scene. Our approach uses DUSt3R
to obtain dense 3D reconstructions from image pairs in a
feed-forward manner, which are used to warp image con-
tents from one view into the other. Then, feature maps of
these images are compared to obtain a similarity score that
is invariant to view-dependent effects. Using MEt3R, we
evaluate the consistency of a large set of previous methods
for novel view and video generation, including our open,
multi-view latent diffusion model. Code is available online:
geometric-rl.mpi-inf.mpg.de/met3r/.

1. Introduction

Generative models, such as diffusion [13, 33] or flow-
based [20] models, are trained to sample from a given
data distribution, which makes them ideal candidates for
stochastic inverse problems, such as reconstruction from in-
complete information [10, 36, 43]. However, they raise the
inherent challenge that for individual samples no ground
truth is available to measure the quality of generations with
pair-wise distance metrics. As a result, metrics such as
FID [12], KID [1] and CMMD [15] have been proposed to
measure the quality of generated images without the need
of a paired ground truth.

Recently, a trend is to repurpose video [3, 14] and im-
age [28, 34] diffusion models for generation of 3D scenes
and objects, by generating multiple views from different
camera poses [10, 39, 50], with or without given images as
conditioning. In comparison to direct generation of 3D rep-
resentations [6, 24, 30], such multi-view generative models
can be trained on images and videos and their pixel-aligned
representation allows for more efficient models and better
scalability. However, they have only a weak to non-existent
inductive bias to produce actually 3D consistent results,
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Figure 2. Existing metrics. A comparison between MEt3R and TSED [46] scores obtained from individual image pairs generated by
GenWarp [31]. TSED misses obvious, partial multi-view inconsistencies and is biased to small violations of epipolar geometry. In
contrast, MEt3R correctly captures clear 3D inconsistencies and is robust to insignificant artifacts almost invisible to the human eye.

which is of large importance for the subsequent lift into
3D. A reliable metric to evaluate the multi-view consistency
of such generations is desperately needed to advance these
models further. Luckily, similar to general image quality,
3D consistency between views can be evaluated without the
existence of paired ground truth data. Existing metrics [46]
though, fail to reliably perform such evaluation, as shown
in Fig. 2. In this work, we propose a metric to measure 3D
consistency, which is independent of the specific scene and
model used to generate the images, works under changing
lighting conditions, does not require camera poses, is dif-
ferentiable, and is a gradual measure of consistency instead
of a binary one.

MEt3R utilizes DUSt3R [40] to obtain dense reconstruc-
tions from image pairs in a common 3D space. It then
projects features of one image into the view of the other
using the reconstructed point maps and computes feature
similarity between the obtained images. As feature extrac-
tor, DINO [4] + FeatUp [9] are used to obtain features that
are more robust to view-dependent effects, such as light-
ing, and which can be compared quantitatively. We further
introduce an open-source multi-view latent diffusion model
(MV-LDM) to be used in our studies, which is able to gener-
ate high-quality and consistent scenes. MEt3R is evaluated
in different scenarios to validate its usefulness and robust-
ness. It is used to benchmark existing methods that gener-
ate multi-view images of scenes, with and without interme-
diate 3D representation, as well as our MV-LDM. We can
show that MV-LDM performs well in the quality vs. consis-
tency trade-off and find that MEt3R is a reliable metric that
aligns well with the expectations of measuring consistency.
In contrast to previous metrics, it can distinguish perfectly
consistent from almost consistent sequences and can cap-
ture fine-grained changes in consistency over time.
In summary, our contributions include:
• the first metric for measuring multi-view consistency of

generated views without given camera poses,

• a comprehensive analysis of existing methods that gener-
ate multi-view images of scenes and videos, and

• an open-source multi-view latent diffusion model, which
performs best in the quality vs. consistency trade-off.

Our code and models are publicly available.

2. Related Work
We introduce a metric to evaluate the 3D consistency of
multi-view generations. Thus, we review existing methods
that generate multi-view representations of scenes and give
an overview of existing quality metrics in this setting.

Multi-view Generative Models. Recent success in 2D
image generation using generative models like diffu-
sion [28] has sparked interest in generating 3D scenes. As
the scarcity of high-quality training data and the complexity
of 3D representations present a challenge for direct text-to-
3D generative methods, recent methods explore repurpos-
ing image or video generation models as supervision signal
or initialization for 3D generation [5, 10, 11, 19, 21, 25, 27,
31, 32, 36, 39, 43, 46, 50].

3D-aware image generation methods can be grouped into
methods for pose-conditioned single-view generation [19,
31, 41, 46, 50], simultaneous multi-view image genera-
tion [10, 27, 32] and methods that use an internal 3D rep-
resentation of the scene as prior for generation [5, 21, 36,
42, 43]. Further distinction can be made between models
that are trained on single-asset 3D datasets [19, 21, 32, 41],
such as Objaverse [7], and models trained on full 3D
scenes [5, 10, 27, 31, 36, 43, 46, 50]. Our introduced met-
ric is agnostic to how images are generated. In our exper-
iments, we perform a comprehensive evaluation of consis-
tency for images generated by openly available models, in-
cluding those that model the joint distribution of input and
single output views [31, 46], multiple output views [27],
and methods that use an internal 3D representation [36] to
enforce consistency.
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Figure 3. Method overview. Our metric evaluates the consistency between images I1 and I2. Given such a pair, we apply DUSt3R to
obtain dense 3D point maps X1 and X2. These point maps are used to project upscaled DINO features F1, F2 into the coordinate frame
of I1, via unprojecting and rendering. We compare the resulting feature maps F̂1 and F̂2 in pixel space to obtain similarity S(I1, I2).

Existing Metrics. Existing metrics used for quantifying
image generation outputs include distribution-based met-
rics, such as the Fréchet Inception Distance (FID) [12], Ker-
nel Inception Distance (KID) [1], Inception Score (IS) [29],
or the CLIP Maximum Mean Discrepancy (CMMD) [16].
While these metrics are used to measure the alignment
of generated samples with a target distribution using pre-
trained feature extractors, they do not measure 3D consis-
tency, which is of utmost importance for multi-view gener-
ative models. To this end, Xie et al. [44] proposed using the
Fréchet Video Distance (FVD) [37] to measure the quality
of generated sequences with moving camera.

To explicitly measure 3D consistency, Watson et al. [41]
proposed to train a NeRF [23] from a subset of generated
views and compare rendered novel views with the remain-
ing generated set of images. This metric comes with several
drawbacks, as it requires a large amount of generated im-
ages, does not work on sparsely observed scenes, is expen-
sive to compute, and difficult to interpret: are dissimilarities
between generated views and rendered novel views from
the trained NeRF caused by inconsistencies in the multi-
view generation pipeline or insufficient quality of the NeRF
training? As an alternative, Yu et al. [46] proposed TSED, a
metric that checks whether image features detected in pairs
of generated images respect the epipolar constraint, given
the relative camera pose. As can be seen in Fig. 2, it has cer-
tain limitations, e.g., it deems two images consistent when it
finds enough matching features, ignoring obvious inconsis-
tencies in the images. In contrast, MEt3R does not require
camera poses as inputs, and we find that it is more aligned
with perceptual assessment when looking at the results of
individual methods.

3. MEt3R: Measuring Consistency
In this section, we introduce MEt3R, our feed-forward met-
ric to measure multi-view consistency. Given two images
as input, a metric for multi-view consistency should (1) pe-

nalize image pairs that are not consistent, and (2) must not
penalize pairs that are consistent but deviate from a given
ground truth or do not follow a desired distribution. Thus,
we develop MEt3R to be orthogonal to image quality met-
rics, e.g., FID [12], and to pixel-wise reconstruction met-
rics, e.g. PSNR.

An overview of MEt3R is shown in Fig. 3. Given two
images I1, I2 as input, we first process them with DUSt3R
to obtain dense 3D point maps for I1 and I2. Then, we ob-
tain DINO [4] features on the original images and upscale
them using FeatUp [9]. We use the predicted point maps to
unproject the upscaled features of both images into the 3D
coordinate frame of I1 and render them separately onto the
2D image plane of the 1st camera to obtain two projections.
Lastly, we compute feature similarity on the projected fea-
tures, leading to cosine similarity scores, which we denote
as S(I1, I2) and S(I2, I1).

MEt3R Definition. Given the scores S(I1, I2) and
S(I2, I1), we can define MEt3R as

MEt3R(I1, I2) = 1− 1

2

(
S(I1, I2) + S(I2, I1)

)
, (1)

which gives MEt3R(·, ·) ∈ [0, 2], lower is better, due to
S(·, ·) ∈ [−1, 1], and is symmetric. We found S to al-
ready behave approximately symmetric. Thus, in practice,
MEt3R(·, ·) can also be approximated well by only com-
puting one direction of S in case of runtime constraints. We
now provide the details for the DUSt3R reconstruction in
Sec. 3.1 and feature similarity in Sec. 3.2

3.1. Stereo Reconstruction with DUSt3R

The core of our method relies on pose-free stereo recon-
struction of pixel-aligned point clouds. Given image pair
I1, I2, the DUSt3R [40] model Ψ regresses pixel-aligned
3D point clouds X1 ∈ RH×W×3 and X2 ∈ RH×W×3:

X1,X2 = Ψ(I1, I2), (2)
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where point locations of both, X1 and X2 are given in the
camera space of I1. It does so by employing a shared
ViT [8] backbone to extract image features. Then, both
feature maps are decoded by separate transformer decoders
with cross-view attention that encodes a multi-view prior
and shares important information between views. Finally
the decoded features are regressed into point maps Xi. For
more details, please refer to the original work [40].

DUSt3R does not require camera poses, which is inher-
ited by MEt3R. While MASt3R [18] additionally finds po-
tentially useful feature correspondences between the two
images, we do not make use of them in our method and
hence stick with DUSt3R.

3.2. High-Resolution Feature Similarity

Since both generated point maps contain points in the
canonical coordinate frame of I1, we can use the point maps
to project pixel-aligned features from camera space of I2
into that of I1. Instead of performing this projection and
the subsequent comparison directly in RGB pixel space, we
found it more suitable to perform them in feature space. The
reason are view-dependent effects, such as different light-
ing, which often occurs in natural videos and negatively im-
pacts RGB comparisons. We provide a detailed comparison
between both approaches in Sec. 5.4.

Concretely, we first use DINO [4] to obtain semantic fea-
tures for I1 and I2. Then, since the corresponding feature
maps are of low resolution and do not represent detailed
structures, we upsample them using FeatUp [9], which em-
ploys an image-adaptive upsampling i.e., a stack of Joint
Bilateral Upsamplers (JBUs) that learned to upsample low
resolution feature maps from DINO. It uses the high resolu-
tion image to transfer high frequency information to the up-
sampling process, allowing the upsampled features to faith-
fully reconstruct and preserve important details.

Let F1 and F2 denote the upsampled DINO features
from images I1 and I2, respectively. Then, we unproject
both features into 3D space using the DUSt3R point maps
and subsequently reproject them onto the camera frame of
I1:

F̂1 = P(F1,X1), F̂2 = P(F2,X2), (3)

where P assigns each 3D point the feature vector from its
corresponding pixel before rendering the feature point cloud
using the PyTorch3D [17] point rasterizer.

Following the projections, we obtain S(I1, I2) as the
weighted sum of pixel-wise similarities between F̂1 and F̂2:

S(I1, I2) =
1

|M|

W∑
i

H∑
j

mij f̂ ij
1 · f̂ ij

2

∥f̂ ij
1 ∥∥f̂ ij

2 ∥
, (4)

where mij := [M]ij is a boolean mask representing the
overlapping region, f̂ ij

1 := [F̂1]ij and f̂ ij
2 := [F̂2]ij .

4. Multi-View Latent Diffusion Model

Additionally to our metric, we provide an open-source
multi-view latent diffusion model (MV-LDM). It is inspired
by the architecture of CAT3D [10], which is not publicly
available. While CAT3D is trained on top of proprietary
image/video diffusion models, we initialize our model with
StableDiffusion and train it on the openly available dataset
RealEstate10k [49]. For a detailed description of MV-LDM,
we refer to the appendix Sec. A. Our code and model are
publicly available for further research.

Architecture and Training. MV-LDM encodes images
into a latent space using a pre-trained VAE encoder from
StableDiffusion 2.1 [28]. Then, camera ray encodings are
concatenated to the latent images, providing camera pose
information before being processed by the diffusion model.
We take a pre-trained StableDiffusion UNet model, add at-
tention between views in the latent space, and finetune it on
RealEstate10k videos for 2M iterations. MV-LDM works
with a total of 5 views at a time consisting of N condition-
ing and M target views.

Anchored Generation. We adopt the anchored genera-
tion strategy from CAT3D [10]. When generating many
views of a scene, the generation process starts with sam-
pling 4 anchor images for widely distributed cameras, con-
ditioned on a single input image. Then, in the second step,
the remaining views are generated and conditioned on the
closest anchor images along with the initial input image.
The goal of the anchoring strategy is to prevent accumu-
lating errors that often occur when generating target views
autoregressively, conditioned on the previously generated
views. When generating with anchors, the accumulation of
errors can be effectively limited. We analyze the effect on
consistency and image quality in Sec. 5.3.

5. Experiments

In this section, we evaluate MEt3R and existing generative
models for multi-view and video generation. Specifically,
we aim to answer the following questions:
Q1: Does MEt3R fulfill the requirements for a useful con-

sistency metrics as stated in Sec. 2, and how does it fare
against previous metrics?

Q2: How consistent are the outputs of existing generative
models for multi-view and video generation?

Q3: How do individual design choices in MEt3R influ-
ence the metric quality?

We begin by introducing the experimental setup in Sec. 5.1
before validating MEt3R (answering Q1) in Sec. 5.2. Then,
we address Q2 in Sec. 5.3 and Q3 in Sec. 5.4.
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Figure 4. Metric comparison. We compare MEt3R against TSED, SED, and FVD by computing average per-frame (/-segment for FVD)
scores over a large number of generated sequences. MEt3R is able to capture nuanced differences in consistency of DFM, MV-LDM,
and real videos, while TSED rates them all very similar. Unlike MEt3R, SED does not capture increasing inconsistency for PhotoNVS
and DFM. MEt3R is able to capture the influence of anchor views in MV-LDM (c.f. Sec. 4 and appendix Sec. A) as structured high-
frequency patterns. For MEt3R, the standard deviation gradually increases, starting from a small value, which is expected behavior due to
conditioning on the first frame and is not the case for the other metrics.

5.1. Experimental Setup

To evaluate MEt3R, we consider two sets of baselines for
multi-view and video generation models. In addition, we
categorize the multi-view generation methods into three
general classes: 1) single-view, 2) multi-view, and 3) 3D
diffusion models.

Multi-view Generation Models We consider GenWarp
[31], which is a single view image-to-image inpainting dif-
fusion model, and PhotoNVS [46], which is an autoregres-
sive multi-view generation model that generates a single
view at a time conditioned on the previous. Moreover, we
consider DFM [36], which is a 3D diffusion method that
incorporates a neural radiance field into the architecture
of an image diffusion model, forcing the rendered novel
views to be 3D consistent by design. Finally, MV-LDM,
our own open-source multi-view diffusion model, coupled
with cross-view attention (c.f. Sec. 4), generates multiple
novel views at a time, resulting in a stronger 3D prior than
single-view methods, i.e., GenWarp and PhotoNVS. We re-
fer to appendix Sec. C for further details on these baselines.

Video Generation Models We take Stable Video Diffu-
sion (SVD) [2], Ruyi-Mini-7B [35] and I2VGen-XL [47],
which are standard open source video diffusion models that
can generate videos with a single input image with an addi-
tional text prompt.

Dataset To faithfully benchmark with MEt3R, we collect
100 image sequences from the RealEstate10K [49] test set.
We take the first image for each sequence as the initial in-
put, followed by 80 target poses, which the multi-view gen-

eration models generate. We perform consecutive pairwise
evaluations on the generated images in a sliding-window
fashion. In this way, we: 1) allow maximal projection area
and more overlapping pixels to evaluate; 2) cover regions
that are extrapolated and not visible in the input image;
and 3) investigate the evolution of pairwise consistency as
the camera pair moves further away from the input image.
We set a standard resolution of 2562 as input to MEt3R.
In case of DFM [36], we upsample from 1282, and for
GenWarp[31], we downsample from 5122 bilinearly. Sim-
ilarly, we use identical test sequences for video diffusion
models but limit the number of generated frames to 48 due
to memory restrictions. Note that we do not have explicit
camera control over the generation and, therefore, are not
equivalent in camera trajectories. In addition, the gener-
ated videos differ in resolution and aspect ratios, which we
resize accordingly to the closest resolution of 2562 while
maintaining the aspect ratio.

5.2. Validating MEt3R

Computing lower bound. We validate the efficacy of
MEt3R by computing the lower bound that the baseline
MEt3R must follow. Intuitively, we can evaluate MEt3R
on a dataset of real video sequences to obtain the lower
bound. Although real video sequences are assumed to be
perfectly 3D consistent, a lower bound slightly above zero
is observed, attributed to errors in point map alignment from
DUSt3R and small 3D inconsistencies in DINO features.
The results for real videos are shown together with the re-
sults from the multi-view generation baselines in Fig. 4.

Comparison to other Metrics. We compare MEt3R with
existing metrics to measure 3D consistency. As baselines,
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Figure 5. Qualitative comparison of generated novel views. We compare generated views of the multi-view generation method for the
same conditioning view. We can extract certain characteristics: DFM is almost perfectly consistent but has lower image quality. PhotoNVS
and MV-LDM are reasonably consistent on a structural scale but fail to produce consistent details. GenWarp fails to keep the structural
consistency over the sequence while producing high-quality images. These observations are confirmed by MEt3R in Tab. 1 and Fig. 4.
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(a) Quality vs. Consistency, Number of Parameters

Methods MEt3R ↓ TSED ↑ SED ↓ FVD ↓ FID ↓ KID ↓

GenWarp [31] 0.120 0.674 1.398 1312.7 29.80 0.0033
PhotoNVS [46] 0.069 0.996 0.479 1498.7 43.67 0.0081
MV-LDM (Ours) 0.036 0.998 0.405 945.8 37.29 0.0064
DFM [36] 0.026 0.990 0.346 1174.6 73.02 0.0324

I2VGen-XL [47] 0.051 - - 1722.6 66.88 0.0161
Ruyi-Mini-7B [35] 0.047 - - 850.5 42.67 0.0071
SVD [2] 0.033 - - 674.6 48.33 0.0111

(b) Quantitative comparison with different metrics

Table 1. Quantitative comparison. Average MEt3R alongside FID [12], KID [1], FVD [38], SED [46] and TSED [46]. (a) Plot comparing
MEt3R with FID and FVD. (b) Quantitative comparison of multi-view and video generation baselines. Among multi-view methods, DFM
achieves the best consistency in MEt3R and SED but the worst in FID and KID due to their sensitivity to blur artifacts, aligning with
the visual impression in Figs. 5, 15 - 19. While GenWarp delivers the best image quality, it has the worst consistency. In contrast, our
MV-LDM achieves a favorable position in the image quality vs. consistency trade-off for multi-view generation. Unlike TSED and SED,
MEt3R applies to generated video as it does not require camera poses. Though a weak correlation between MEt3R and FVD is observed
in video generation, this does not extend to multi-view generation. As FVD assesses the overall quality and temporal coherency across
several videos, MEt3R evaluates pairwise 3D consistency within individual video sequences without relying on a ground truth dataset.

.

we consider SED [46], TSED [46], and FVD [37] for multi-
view generation. In Fig. 4, we plot per image-pair scores
for all generated frames, averaged over 100 sequences. For
FVD, we compare the distributions of image segments by
splitting the sequences into chunks of 10 frames each. We
find that MEt3R, SED, and FVD increase as we progress
through the image-pair sequence, suggesting a decrease in
consistency, which is also qualitatively visible in Fig. 5. Al-
though TSED captures this trend for GenWarp [31], it does
not report a meaningful separation for other baselines. Un-

like TSED and SED, MEt3R captures the gradual decrease
in consistency for PhotoNVS [46] and MV-LDM. For Gen-
Warp, MEt3R captures this trend more accurately, starting
with a lower score and standard deviation, as the first frame
provides stronger conditioning for closer views with a larger
overlap, resulting in better consistency. Furthermore, we
observe sudden periodic spikes for MV-LDM in MEt3R and
SED, attributed to transition artifacts when we switch be-
tween anchors during sampling (c.f. Sec. 4 and A.2). Un-
like all other metrics, DFM [36] is consistently worse than
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MV-LDM in terms of FVD. Since DFM is supposed to be
3D consistent by design (c.f. Sec. 5.1 and C), this shows
that FVD is sensitive to blurry samples and does not eval-
uate multi-view consistency. Ideally, a larger sample size
is preferred to accurately capture and compare the under-
lying distribution of generated and ground-truth image se-
quences [37], to which FVD is sensitive. Therefore, it can-
not be applied at the level of individual image pairs.

5.3. Evaluations of Models

5.3.1 Multi-View Generation

Following the validation of MEt3R in comparison to other
metrics, we now benchmark our multi-view generation
baselines on the test sequences (c.f. Sec. 5.1). In Tab. 1(a),
we plot MEt3R against FID and KID along with the respec-
tive model size in terms of the number of parameters. We
find that GenWarp achieves the worst consistency in terms
of MEt3R, where the contents of the scene change drasti-
cally as we transition from one image to another, which can
be qualitatively observed in Figs. 5, 15 - 19. This behavior
is expected since GenWarp generates one image at a time.
Meanwhile, PhotoNVS performs slightly better than Gen-
Warp but produces low-quality results, which are captured
quantitatively by FID and KID. GenWarp and PhotoNVS
cannot learn an expressive multi-view prior since they are
single-view generation models, hindering their ability to
produce 3D consistent results.

Conversely, diffusing multiple views at a time induces
a stronger prior towards 3D consistency, as in MV-LDM,
where we see an overall improvement in MEt3R. Among
all evaluated methods, MV-LDM achieves the best trade-
off between 3D consistency and novel view quality, both
qualitatively and quantitatively. Moving further towards
3D consistency, DFM uses an underlying 3D representa-
tion and, therefore, produces consistent novel views by de-
sign, which is captured quantitatively in the form of better
MEt3R scores than MV-LDM. However, this strong induc-
tive bias comes with the drawback of blurry renderings far
away from the ground-truth image distribution, as reflected
by FID and KID. This highlights that MEt3R only focuses
on 3D consistency irrespective of image content and can
therefore complement standard image quality metrics well.

MEt3R on multiple scales. In Tab. 2, we investigate
the effect of image resolutions on MEt3R compared to
SED [46]. We find that SED is highly sensitive to variation
in image resolution with a significant increase at 1282. This
is expected since SED computes the geometric distance of
each correspondence from their epipolar line in the 2D-
pixel space. Meanwhile, MEt3R is more robust, attributed
to the measurement in the feature space (c.f. Sec. 3), thus
maintaining only minor differences in the scores. Although
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Figure 6. Feature similarity ablation. We compare MEt3R
against versions of it that compare RGB projections via PSNR and
SSIM. It can be seen that the PSNR versions give better scores to
DFM than to real videos. We attribute this to their sensitivity to
view-dependent effects, such as lighting. In contrast, MEt3R rates
the real video best. Further, the standard deviation of PSNR and
SSIM versions are much higher, also for real videos, indicating a
lower signal-to-noise ratio.

2562 2242 1282

MEt3R SED DiffMEt3R DiffSED DiffMEt3R DiffSED

GenWarp [31] 0.120 1.398 +2.58% +74.70% -6.95% +80.27%
PhotoNVS [46] 0.069 0.479 +3.86% +26.22% -1.78% +42.53%
MV-LDM (Ours) 0.036 0.405 +3.88% -2.27% -16.63% +34.28%
DFM [36] 0.026 0.346 +9.39% +52.73% -5.97% +70.15%

Real Video 0.022 0.181 +2.44% +18.98% -47.80% +148.39%

Table 2. MET3R vs. SED on multiple resolutions. We show dif-
ferences in SED [46] and MEt3R for the baseline multi-view gen-
eration models over changing image resolution against the base
resolution of 2562 in percentage. MEt3R is more robust to vari-
ations in the input resolution since it measures in feature space,
unlike SED, which measures in pixel space (c.f. Sec. 3). Here,
SEDs total scale is less than one order of magnitude larger than
MEt3Rs, while its variations are more than one order of magni-
tude larger in most cases.

the differences are small, we still recommend using a simi-
lar resolution for all baselines for a fair comparison.

5.3.2 Video Generation

A particular advantage of MEt3R is that it does not require
camera poses to measure consistency, unlike TSED [46]
and SED [46]. Thus, it is the first quantitative multi-view
consistency metric that can be used on videos generated by
video diffusion models.

Table 1 shows the average MEt3R along with FID, KID,
and FVD. Moreover, Fig. 7 shows the average MEt3R
per image pair for I2VGen-XL [47], Ruyi-Mini-7B [35]
and SVD[2] which clearly shows that SVD has better 3D
consistency than Ruyi-Mini-7B and I2VGen-XL. However,
SVD generates smoother and shorter camera trajectories,
whereas Ruyi-Mini-7B and I2VGen-XL produce large mo-
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Figure 7. MEt3R on generated videos. Per-image-pair plot
for MEt3R across 48 frames and averaged across 100 sequences
of RealEstate10K. For I2VGen-XL, we observe large inconsis-
tencies initially as the inputs are out-of-distribution, followed by
gradual improvement, indicating the inputs get closer to being in-
distribution, also visible qualitatively in Figs. 15 - 19. Meanwhile,
Ruyi-Mini-7B shows several periodic spikes indicating abrupt in-
consistencies throughout the video sequence, whereas MEt3R for
SVD stays relatively low and smooth.

tion at the expense of 3D consistency. Ruyi-Mini-7B is
consistently worse, with periodic spikes, attributed to un-
stable camera motion and sudden 3D inconsistencies. For
I2VGen-XL, as the inputs are out of distribution, MEt3R
starts from a higher value followed by a gradual improve-
ment as the model forces each progressing sample to be
more in distribution while preserving similar global struc-
tures as in the initial input image. The resulting MEt3R
scores correlate with visual judgment about the 3D consis-
tency of the baseline video diffusion models, which can be
observed in Figs. 15 - 19 in the appendix.

5.4. Analyzing Alternative Similarities

We evaluate alternatives to the cosine similarity between
DINO features as described in Sec. 3.2.

Image Similarity. Instead of projecting features onto a
shared view, staying in RGB space would enable the use
of classical image quality metrics such as PSNR and SSIM.
Fig. 6 provides a comparison of such variants MEt3RPSNR

and MEt3RSSIM with MEt3R. While a reasonable nega-
tive correlation can be observed, DFM [36] outperforms the
ground-truth video w.r.t. these metrics. We attribute this
to the bias of PSNR and SSIM to blur, which is apparent
in novel views generated by DFM due to its low resolution
and reliance on pixelNeRF [45] acting as an architectural
bottleneck. In contrast, real videos exhibit view-dependent
effects, including brightness variations and reflections, to
which PSNR and SSIM are highly sensitive. With MEt3R,
we aim to abstract from these pixel-level inconsistencies

1 20 40 60 80
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0.05
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0.15
0.20
0.25
0.30
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1 20 40 60 80
Frame
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1 20 40 60 80
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GenWarp
PhotoNVS

MV-LDM
DFM

Real Video
Random Noise

Figure 8. Feature backbone ablation. We analyze the effect of
different feature backbones on MEt3R. While DINOv2 [26] and
MaskCLIP [48] can be employed as well, we found DINO features
to lead to a more informative separation of models.

and instead provide a metric that robustly measures the 3D
consistency of generative approaches. Therefore, we opt for
similarities in a suitable feature space.

Feature Backbones. In Fig. 8, we evaluate MEt3R in
combination with DINOv2 [26] and MaskCLIP [48] as al-
ternatives to DINO [4] in the feature backbone. DINOv2
and MaskCLIP strongly compress the values in a tighter
range, reducing the gap between extremely inconsistent and
consistent generation. We find that DINO features provide
a better separation of model performance and capture sub-
stantial inconsistencies more reliably, as seen from the ran-
dom noise. Nevertheless, MEt3R is flexible with this design
choice as better and more 3D consistent feature backbones
can be used to improve the overall metric and to further re-
duce the lower bound.

6. Conclusion
We presented MEt3R, a novel metric for 3D consistency of
generated multi-view images. Given the huge success of
large-scale image diffusion models and their applications
as strong priors for the generation of multi-view images as
a form of 3D representation, purely distribution-based met-
rics like FVD are insufficient to properly evaluate the 3D ca-
pabilites of such methods. First, MEt3R leverages DUSt3R
to warp images robustly into a shared view without relying
on ground truth camera poses as input. Secondly, by com-
puting similarities in the feature space of DINO, MEt3R ab-
stracts from view-dependent effects. As a result, we show
that our proposed metric can be effectively employed for
comparing the performance of multi-view generation ap-
proaches like our open-source multi-view latent diffusion
model, which finds the best trade-off between novel view
quality and consistency. Given the recent trend towards
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large video models, we see great potential for MEt3R to
effectively evaluate their 3D consistency since no ground
truth camera poses are required.
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MEt3R: Measuring Multi-View Consistency in Generated Images

Supplementary Material

The supplementary materials are structured as follows.
First, we provide detailed information about our multi-view
latent diffusion model (MV-LDM) in Sec. A. Then, we pro-
vide details about the MEt3R metric in Sec. B. Finally,
we present additional details on the multi-view generation
baselines in Sec. C and their corresponding runtime statis-
tics in Sec. D. Please also note our supplementary video,
showcasing evaluations in motion.

A. Multi-View Latent Diffusion Model

This section presents further details for MV-LDM, includ-
ing the architectural components, training, and sampling de-
tails.

A.1. Architecture.

Like CAT3D [10], our architecture is based on a multi-
view 2D UNet shared across multiple input views with 3D
self-attention at each UNet block. We initialize the UNet
weights with Stable Diffuson 2.1 [28] and replace each at-
tention layer with a 3D self-attention layer from MVDream
[32] where each token from one view attends to all tokens
from the other views. This accounts for 1.1B parameters
for the multi-view UNet and 83.7M for the VAE. Due to
memory and resource limitations, we fix the total number
of concurrent views to 5, including the target and the con-
ditioning views. Figure 9 shows the architecture of MV-
LDM. We apply a VAE encoder and map the input images
(H×W×3) into latent representation (H8 ×W

8 ×4). For the
low-resolution latent maps, we generate the ray encodings
of shape (H8 × W

8 × 6), which consists of a 3-dimensional
origin and a 3-dimensional direction vector in relative cam-
era space and concatenate it along the channel dimension.

A.2. Training and Evaluation with MEt3R

Dataset. We use RealEstate10K [49], which consists of
80K video sequences accounting for 10 million frames.
During training, we randomly select a video sequence and
the corresponding conditioning and target views that satisfy
the following criteria:
• Sample 2 conditioning views (left and right) at frame

number fL and fR with frame distance dc = fR − fL
satisfying 50 ≤ dc ≤ 180.

• Sample 3 target views with distance dt from the condi-
tioning view that satisfies fL − 100 ≤ dt ≤ fR + 100.

Afterward, we transform the absolute poses into relative
poses with respect to the first conditioning view.

Training. The training procedure follows DDPM [13],
sampling a noise level t, applying that to all given latent
images and training the network to predict the noise present
in the image. We randomly select the conditioning views
N between 1 or 2 and the target views M between 3 and
4, respectively, to allow for single and few-view novel view
generation. We linearly vary the beta schedule from 0.0001
to 0.02 for the forward diffusion process and train MV-LDM
for a total of 1.65M iterations with an effective batch size of
24 at resolution 2562. We use AdamW [22] optimizer with
a constant learning rate of 2e−5. During sampling, the net-
work can receive a combination of existing and pure noise
images with camera ray encodings to perform conditional
generation. The backward diffusion process is done with ϵ-
parameterization defined as the output of the MV-LDM ϵθ
as,

ϵpred = ϵθ (zt, ct, t) , (5)

where ϵpred = (ϵipred)
M
i=1 is the predicted noise latent,

zt = (zit)
M
i=1 is the noisy latent, ct = (cjt )

N
j=1 is the clean

latent at the timestep t, whereas M and N are the num-
ber of target and conditioning views, respectively. The pre-
dicted noise is used to make a step in the direction of a
sample in the target distribution under the DDIM [33] for-
mulation. For classifier-free guidance, we randomly drop
the clean conditioning views with a probability of 10%, and
during sampling, we apply a guidance scale of 3 similar to
CAT3D [10].

For training, we apply the standard diffusion loss on
the predicted mean noise as the mean-squared error (MSE)
against the ground truth noise:

L = ||ϵ− ϵθ (zt, ct, t) ||22, (6)

where ϵ = (ϵi)Mi=1 and ϵi ∼ N (0, I) is the ground truth
noise for each target view.

Training evolution of MEt3R. Figure 10 shows the trend
in 3D consistency in terms of MEt3R over training itera-
tions, showing consistent improvements with longer train-
ing. There is a significant improvement in the initial 100k,
and afterward, it saturates near 1M iterations.

Anchored vs. autoregressive sampling. We further test
MEt3R with two sampling strategies, i.e., (1) autoregres-
sively generating new target views and new anchors, con-
ditioned on the previous anchor, and (2) using anchored
sampling where we generate anchors first and then the rest
as described in Sec. 4. Fig. 11 shows the average MEt3R
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Figure 9. MV-LDM. Architecture overview of MV-LDM, which consists of a shared 2D UNet initialized from Stable Diffusion 2.1 [28]
across multiple input views with cross-view attentions (3D attention) in between for modeling multi-view prior.
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Figure 10. MEt3R at different training iterations. As we con-
tinue to train MV-LDM, we see a consistent improvement in 3D
consistency, which is an expected behavior. Furthermore, in the
beginning, the improvements are large, which slows down and sat-
urates in the later iterations.

plot per image-pair, showing the improvements with an-
chored sampling. For autoregressive sampling, we observe
many diverging peaks that refer to several anchor-to-anchor
transitions and accumulating errors. In contrast, for an-
chored sampling, the anchors are generated together first,
followed by generating the rest. This limits error accumula-
tion and results in fewer anchor-to-anchor transitions. Refer
to Fig. 12 for a visual illustration of anchored and autore-
gressive sampling schemes.

B. Additional MEt3R Architectural Details

This section presents additional details on the MEt3R
pipeline, including the projection of both point maps to the
first view and a description of the overlap mask used.

Projection matrix. Figure 13 shows a side-by-side com-
parison of different projections we obtain using 1): fixed
focal length and 2): Adjusting focal length based on the
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Figure 11. Anchored vs. autoregressive. Per-image-pair MEt3R
on 2 different sampling strategies. For autoregressive sampling,
we see significant and periodic spikes becoming larger as we
progress and show the effect of compounding error, i.e., sequen-
tially generating new frames and anchors conditioned on the previ-
ously generated ones. As illustrated in Fig. 12, autoregressive sam-
pling produces several anchor-to-anchor transitions causing these
periodic spikes. On the other hand, anchored generation limits the
effect of compounding error by generating all anchors in parallel.

scale of canonical point map. We compute the canonical
point map Xcanon as the weighted sum of the point maps
pair Xi and Xi+1 using their corresponding confidences Ci

and Ci+1 from DUSt3R [40] as,

Xcanon =
Ci ⊙Xi +Ci+1 ⊙Xi+1

Ci +Ci+1
(7)

Then, we extract the x, y, and z coordinate maps from
Xcanon as X,Y,Z ∈ RH×W . Moreover, DUSt3R already
implements this in their codebase, which we incorporate in
MEt3R as shown in Alg. 1. The computed focal length fx
and fy , along with the principle point offsets cx and cy , are
used to form the projection matrix.
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Figure 12. Anchored vs. Autoregressive sampling schemes. An illustration of the differences in the sampling schemes. In autoregressive
sampling, we start from the initial input image and generate a set of target frames. The next set of frames is conditioned both on the
input image and on the last frame (anchor) of the previously generated set. With this sampling strategy, we see several anchor-to-anchor
transitions and results in large inconsistencies as visible in Fig. 11. Whereas using anchored generation i.e., generate anchors first and then
sample the remaining conditioned on the closest anchor and the input image. With this strategy, we observe significantly fewer anchor-to-
anchor transitions, limited error accumulation, and relatively stable and lower MEt3R across the image pairs.

Algorithm 1 Computing focal length given 2D grid of pixel
positions and 3D canonical point maps
Input: 2D pixel position U,V ∈ RH×W , 3D position

X,Y,Z ∈ RH×W

Output: fx, fy
1: Qx = U⊙Z

X ▷ ⊙ is the Hadamard Product
2: Qy = V⊙Z

Y
3: fx = median(Qx) ▷ Across spatial dimension
4: fy = median(Qy)

Overlap mask. We normalize MEt3R with an overlap
mask M as formulated in Eq. 4 which is a crucial step. Dur-
ing rasterization, we set the background values to a large
negative value η for each channel and subsequently build
the mask using the background values for each projected
view, i.e,

mk
ij =

{
0 if pkij = η

1 otherwise
(8)

where mk
ij = [Mk]ij is the mask for kth view, pkij = [Pk]ij

are the pixel values after projection and rasterization. We
set η = −10000, and we perform pixel-wise multiplication
of both masks Mi and Mi+1 to get the overlap mask M:

M = Mi ⊙Mi+1 (9)

Figure. 14 shows MEt3R without normalizing against the
overlap mask M in Eq. 4. Instead, we take the average of
the similarity scores for all pixels. Compared to MEt3R
(c.f. Fig. 4), the lower bound gets significantly larger with

Figure 13. Fixed vs. adjusted projection matrix. With fixed
focal length, the projection area varies across different scales of
DUSt3R point maps. We automatically adjust the focal length
for each example pair to allow maximal projection and, therefore,
more pixels for evaluating feature similarity.

a large offset, while DFM [36] gets worse than all other
baselines. Meanwhile, PhotoNVS [46] gets almost similar
to GenWarp [31]. This contradicts both the theoretical ex-
pectation and the visual judgment about the 3D consistency
of the baselines. In addition, the standard deviations for all
baselines are large and correspond to noisy scores for in-
dividual image pairs across the test sequences. However,
some key features, such as spikes from anchor-to-anchor
transitions in MV-LDM and the gradual increase in MEt3R
due to decreasing 3D consistency, are still visible.
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Figure 14. MEt3R without overlap mask. Per-image-pair
MEt3R without normalizing against the overlap mask. Under this
setting, DFM [36] is worse than all other baselines in 3D con-
sistency, even though it has a strong inductive bias, which forces
its results to be 3D consistent at the expense of blur. Whereas
PhotoNVS [46] and GenWarp [31] are similar, both of which in-
crease gradually, whereas MV-LDM stays relatively low with vis-
ible spikes due to anchor-to-anchor transitions.

C. Additional Details on Multi-View Genera-
tion Models

In the following, we present additional details on the multi-
view generation baselines.

GenWarp. GenWarp [31] employs a two-step approach,
i.e., project and in-paint. With a monocular depth estimator,
it predicts depth maps for the input image and un-projects
the RGB in 3D space. The 3D points are rendered onto a
target view, followed by inpainting with an image-to-image
diffusion model. GenWarp generates only one view at a
time. For every novel view, we condition the model on the
fixed input view for every novel view, as an autoregressive
approach diverges very quickly due to error accumulation.

PhotoNVS. Just like GenWarp, PhotoNVS [46] also gen-
erates a single view at a time given a conditioning image.
However, by employing a score-based diffusion UNet archi-
tecture for both views with cross-view attention in-between,
it can always condition on the last generated frame in an
autoregressive fashion, improving multi-view consistency
across a full sequence.

DFM. DFM [36] incorporates a neural radiance field into
the architecture of an image diffusion model such that novel
views are 3D consistent by design. By employing pixel-
NeRF [45], DFM generates the 3D representation given a
set of conditioning views. Starting from a single view, it

GenWarp PhotoNVS DFM MV-LDM

Runtime (s) 70 7840 1020 100

Table 3. Runtime comparison. We report the runtime in seconds
for all the baselines for generating a full video sequence compris-
ing 80 frames. MV-LDM and GenWarp achieve the fastest sam-
pling, followed by DFM and then PhotoNVS.

generates an extrapolated target view that acts as additional
conditioning in all subsequent sampling steps.

D. Runtime
In Tab. 3, we compare the runtimes of the evaluated meth-
ods for generating 80 frames of a video sequence on an
NVIDIA RTX4090 GPU with 24GB VRAM. GenWarp
achieves the fastest sampling time, as high-quality but in-
consistent novel views can already be obtained with 20
DDIM steps. Although MV-LDM generates multiple views
at a time, which improves 3D consistency and uses 70
DDIM steps to achieve good image quality, it is only
slightly slower than the single-view generation of GenWarp.
Both DFM and PhotoNVS are an order of magnitude slower
due to slow volumetric NeRF rendering and many denois-
ing steps, respectively. Our proposed metric MEt3R can be
evaluated in only 95ms per image pair.
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Figure 15. Examples of generated multi-views and videos. From Top → Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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Figure 16. Examples of generated multi-views and videos. From Top → Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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Figure 17. Examples of generated multi-views and videos. From Top → Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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Figure 18. Examples of generated multi-views and videos. From Top → Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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Figure 19. Examples of generated multi-views and videos. From Top → Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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